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Abstract Any mobile having a velocity which is the addition of a rotation
velocity and a translation velocity, both with a constant modulus, will follow
a trajectory that respects the three laws of Kepler. This article demonstrates
this theorem and discusses it. An important result is to forecast the mathe-
matical structure of the Newton’s acceleration of attraction, not any more as
a prior, but as a consequence, the subsequent centripetal acceleration due to
the rotation velocity.
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1 Introduction

Since the work of Kepler we know that, at a first approximation, the trajecto-
ries of all celestial satellites are following three peculiar laws [1]. These laws are
kinematic ones, they do not refer to any physical consideration, as the mass
for instance. We can then expect to forecast them only from the kinematics.

This is what we are going to achieve here by the mean of a kinematic the-
orem that applies to all keplerian mobiles. We will not postulate any physical
reason to explain the existence of this theorem in the real world, but just
demonstrate its validity from a mathematical point of view.

We will see however that this theorem forecasts the Newton’s attraction
law as a consequence, but not any more as a mandatory foundation of the
keplerian motion.
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2 Herve Le Cornec

2 Theorem of the keplerian kinematics

2.1 Statement

Let us state the following theorem :

Theorem 1 Any mobile having a velocity which is the addition of a rotation

velocity and a translation velocity, both with a constant modulus, will follow a

trajectory that respect the three laws of Kepler.

At a mathematical point of view the velocity described by this theorem is
written as follows :

v = vR + vT (1)

with vR = ω ∧ r, vR = ‖vR‖ = ωr = cste and vT = ‖vT ‖ = cste, where ω is
the frequency of rotation and r is the vector radius.

2.2 Proof

To prove the validity of this theorem we have to demonstrate that the relation
1 forecasts the three laws. This is what we are going to achieve but we need
first to define the momentum and the acceleration for this type of motion.

2.2.1 Momentum and acceleration

We define the vector L as follows :

L = r ∧ v (2)

We call it ”kinematic momentum” as a reference to the well known physical
kinetic momentum M = mr ∧ v [2], where m is the mass of the mobile. Note
that the kinematic momentum L is collinear to the frequency of rotation, but
is mass independent.

Concerning the acceleration γ, as far as the translation velocity is a con-
stant, there is no translation acceleration, and the derivative of the relation 1
with respect to time is γ = ω̇ ∧ r+ ω ∧ v. Because ωr = cste this expression
becomes γ = − ω

r2
∧ [r ∧ (r ∧ v)] and finally :

γ = −LvR
r3

r (3)

This expression shows that the acceleration and the vector radius are collinear.
This fact forces the kinematic momentum to be constant because its derivative
with respect to time, L̇ = r∧γ, is then null. We can note that this expression
of the acceleration is also consistent with the mathematical structure of the
acceleration of the Newton’s attraction [1]. We will discuss this property later
on.
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Theorem of the keplerian kinematics 3

2.2.2 First law of Kepler

The vector multiplication of the rotation velocity and the kinematic momen-
tum leads to :

vR ∧ L = v2R

(

1 +
vR.vT

v2
R

)

r (4)

Thus the modulus of this last expression is

L

vR
=

(

1 +
vT
vR

cos θ

)

r or p = (1 + e cos θ) r (5)

This last equation is the one of a conic where p = L/vR is the parameter of the
orbit, e = vT /vR is its eccentricity and θ is the angle between the directions of
vR and vT , i.e. the true anomaly. Because L, vR and vT are constant p and e
are also constant. The relation 5 therefore agrees with the first law of Kepler
stating that the trajectory must be a conic [1].

2.2.3 Second law of Kepler

The second law, or area law, derives from the constancy of the kinematic
momentum. As explained by L. Landau and E. Lifchitz [3], the momentum
can also be written as a function of the position and the derivative of the true
anomaly with respect to time :

L = r2θ̇ (6)

The right side of this last equation being the double of the areal velocity, and
the momentum being a constant, the areal velocity must also be a constant.
This is the second law of Kepler [1].

2.2.4 Third law of Kepler

The integration with respect to time of the relation 6 , over a complete period
T of revolution, gives

LT =

∫

2π

0

r2dθ (7)

For the case where the trajectory is an ellipse, the right side of this equation
is worth 2πab, where a is the major semi axis and b the minor one. Knowing
that a = p/(1 − e2) and b = p/

√
1− e2, it is easy to finally get the following

relation :

LvR = 4π2a3/T 2 (8)

Because L and vR are constant this last expression agrees with the third law
of Kepler stating that the square of the period of revolution is proportional to
the cube of the major semi axis [1].
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4 Herve Le Cornec

3 Discussion

We demonstrated that the theorem 1 forecasts the three laws of Kepler. So
far the only way to explain them was the Newton’s postulate of attraction,
and of course the Einstein’s general relativity, which resumes to the Newton’s
law for slow velocities, regarding the speed of light. When we first state the
Newton’s postulate as the reason of the keplerian motion, it is possible to
demonstrate the existence of the relation 1. Consequently the literature has
already noticed that the relation 1 exists [4–10] but the authors present it
always as a consequence of the Newton’s law, not as a prior.

The kinematic point of view presented here inverses this assumption, mak-
ing the Newton’s acceleration a consequence, the derivative with rapport to
time, of the relation 1. This acceleration is only the subsequent centripetal ac-
celeration due to the rotation velocity. Therefore from the kinematic point of
view, regarding the equation 3, the Newton’s postulate of attraction is reduced
to set up the only following assumption :

LvR = GM (9)

where G is the constant of gravitation and M the attracting mass. Usually
the most remarkable part of the Newton’s postulate is considered to be the
”inverse square law”, i.e. the dependency of the acceleration toward the inverse
square of the distance to the attracting mass. However for the kinematics this
inverse square characteristic is only a geometrical consequence of the theorem
1, so it is not a postulate any more but a kinematic trivial result. Nonetheless
the other part of the Newton’s assumption consists to state that the coefficient
of proportionality should be GM , instead of the strictly expected LvR, and
this represents indeed a postulate with regards to the kinematics.

At this point we may wonder if the Newton’s assumption is true for for all
masses, at all scales, while the theorem 1, and thus the equation 3, are always
true for all masses at all scales. About the mass, note that remarkably the
kinematic approach is consistent with the Galileo’s principle of equivalence
stating that the motion in a gravitational field is mass independent. Indeed
the theorem 1 is also mass independent.

Of course the theorem 1 alone does not explain all the subtleties of the
gravitation (precession, nutation, many body problem, ...). It is only a funda-
mental brick describing the simple pure keplerian motion. It is exactly at the
same position as the Newton’s law of attraction before the invention of the
Lagrangian mechanics. The theorem 1 should be a new starting point to have
a new look at the gravitation. For instance if the translation velocity vT is
replaced by a rotation velocity vT = ωT ∧ rT , the precession appears. So this
theorem has to be investigated moreover in order to get all that the kinematics
can give us.
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Theorem of the keplerian kinematics 5

Even if the theorem 1 proposes a new vision of the gravitation, it is not
a physics theory. Sure it is not a postulate, but the fundamental reason why
nature chooses to set it up, in the real world, is still a remaining question, that
will certainly need a physics postulate to be answered. Any way, whatever this
postulate could be, the physicist can not ignore the kinematics, therefore he
has to take the theorem 1, and its consequences, into account.
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